Design and Research into the Nonlinear Main Vibration Spring in Double-mass High Energy Vibration Milling

نویسندگان

  • Xiaolan Yang
  • Jifeng Liu
  • Yajun Zhou
  • Zhen Wang
چکیده

Article history: Received: 06.02.2015. Received in revised form: 11.05.2015. Accepted: 15.05.2015. Due to the shortcomings of one mass vibration mill such as inefficiency, high energy consumption and big noise, a double mass high energy vibration mill, in which transient high vibration intensity is produced, is investigated by applying the non linear vibration theory. The nonlinear hard feature variable-pitch spring i0s used in the main vibration system which has the characteristic of the stiffness that can be varied along with the dynamic load. In this way, the goals of operation stabilization and energy saving will be achieved. Results from the field test show that the efficiency is obviously improved, i.e. a 28% increase in the vibration intensity, 10% decrease in energy consumption and 4% decrease in noise. That verifies the correctness of the main vibration system construction. This system can be used by others as a reference design for this field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Vibration Analysis of the Beam Carrying a Moving Mass Using Modified Homotopy

In the present study, the analysis of nonlinear vibration for a simply-supported flexible beam with a constant velocity carrying a moving mass is studied. The amplitude of vibration assumed high and its deformation rate is assumed slow. Due to the high amplitude of vibrations, stretching is created in mid-plane, resulting in, the nonlinear strain-displacement relations is obtained, Thus, Nonlin...

متن کامل

Identification of Nonlinear Modal Interactions in a Beam-Mass-Spring-Damper System based on Mono-Frequency Vibration Response

In this paper, nonlinear modal interactions caused by one-to-three internal resonance in a beam-mass-spring-damper system are investigated based on nonlinear system identification. For this purpose, the equations governing the transverse vibrations of the beam and mass are analyzed via the multiple scale method and the vibration response of the system under primary resonance is extracted. Then,...

متن کامل

Optimal Nonlinear Energy Sinks in Vibration Mitigation of the Beams Traversed by Successive Moving Loads

Optimal Nonlinear Energy Sink (NES) is employed in vibration suppression of the beams subjected to successive moving loads in this paper. As a real application, a typical railway bridge is dynamically modeled by a single-span beam and a traveling high-speed train is simulated by a series of successive moving loads. Genetic algorithm is employed as the optimization technique and optimal paramete...

متن کامل

The Study and Development of Energy Harvesting Vibration Absorbers

Vibrational energy harvesting seeks to convert ambient energy into electricity when battery replacement or line transmission is infeasible or impracticable. Electromechanical mass-spring harvesters are designed to exhibit a resonance frequency close to the principal vibrational frequency of the main or environmental system; excited near to resonance, the harvesters convert the kinetic or potent...

متن کامل

Roll vibration control for a Full vehicle Model Using Vibration Absorber

This paper presents a reduce roll vibration of the full vehicle model with passive suspension systems using vibration absorber to change the dynamic system matrix stat’s eigenvalue. Since using the controller system has been splurged and required to energy consuming, in this research the vehicle body roll vibration has been reduced and supplied vehicle stability using a vibration absorber for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017